

LUX

Linac/Laser-based source for

Ultrafast X-rays

John Corlett

LBNL

for the LUX design study team

LUX design study contributors

W. Barry, W. A. Barletta, J. Byrd, J. N. Corlett, S. DeSantis, L. Doolittle, W. M. Fawley, W. Graves⁷, M. A. Green, N. Hartman, P. Heimann, D. Jones⁹, D. Kairan¹, H. Kapteyn⁸, E. Kujawski, S. Leone, D. Li, S. Lidia, P. Luft, R. McClure, H. Padmore, F. Parmigiani², G. Penn, Y. Petroff, W. Pirkl³, M. Placidi⁴, A. Ratti, D. Reavill, I. Reichel, R. Rimmer⁵, A. Ratti, M. Reinsch¹⁰, L. Reginato, K.E. Robinson, F. Sannibale, R. Schoenlein, J. Staples, J. Tanabe, D. Truchlikova, S. Virostek, W. Wan, S. Wang⁶, R. Wells, R. Wilcox, A. Wolski, J. Wurtele¹⁰, A. Zholents, M. Zisman

Lawrence Berkeley National Laboratory, CA, USA

¹Budker Institute of Nuclear Physics, Novosibirsk, Russia

²Università Cattolica del Sacro Cuore, Milano, Italy

³Geneva, Switzerland

⁴CERN, Geneva, Switzerland

⁵Thomas Jefferson National Accelerator Facility

⁶ Indiana University

⁷MIT-Bates

⁸JILA / Univ. of Colorado, Boulder

⁹ Univ. of British Columbia / JILA

¹⁰UC Berkeley

LUX is the latest development in LBNL's history of ultrafast x-ray facilities

Thomson scattering

Laser slicing R. Schoenlein poster

- Kim, K.-J., S. Chattopadhyay, and C.V. Shank, "Generation of femtosecond x-ray pulses by 90 degree Thomson scattering", Nuc. Inst. and Meth. in Phys. Res. A, 1994. 341: p. 351-354.
- Zholents, A.A. and M.S. Zolotorev, "Femtosecond x-ray pulses of synchrotron radiation", Phys. Rev. Lett., 1996.
 76(6): p. 912-915.
- Leemans, W.P., et al.," X-ray based time resolved electron beam characterization via 90° Thomson scattering", Phys. Rev. Lett., 1996. 77(20): p. 4182-4185.
- Schoenlein, R.W., et al., "Femtosecond x-ray pulses at 0.4 angstroms generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials.", Science, 1996. 274: p. 236-238.
- Zholents, A., P. Heimann, M. Zolotorev, and J. Byrd, "Generation of subpicosecond x-ray pulses using RF orbit deflection", Nuc. Instr. and Methods in Phys. Res. A, 1999. 425: p. 385-389.
- Schoenlein, R.W., et al.," Generation of x-ray pulses via laser-electron beam interaction", Appl. Phys. B, 2000.
 71: p. 1-10.
- Schoenlein, R.W., et al.," Generation of femtosecond pulses of synchrotron radiation", Science, 2000. 287: p.
 2237-2240.

LUX facility concept for time-resolved spectroscopies

- Ultrafast laser pulse "pumps" a process in the sample
- Ultrafast x-ray pulse "probes" the sample after time Δt
 - Ultrafast lasers an integral part of the facility
 - Synchronized x-ray and laser pulses
- Multidimensional spectroscopies e.g. 3 laser pump beams and an x-ray probe
- Two x-ray wavelengths

A refined tool supporting a range of techniques for structural dynamics applications

- Combines diffraction and spectroscopy
 - Nuclear positions and electronic, chemical or structural probes

Plus photoelectron spectroscopy, photoemission microscopy, etc

- Access new science in the time-domain x-ray regime
- Time dynamics parameters have not been widely exploited in the x-ray, mostly due to lack of sources

Repetition rate vs. energy per pulse

MHz-GHz, nJs, limited by acoustic velocities in samples, good for counting expt's, photoemission imaging

X-ray pulse repetition rate

X-ray pulse energy

1 kHz-100kHz, µJs ideal match to ultrafast lasers and sample relaxation / replenishment considerations, single photon regime modest power, avoid sample damage, high signal averaging rate

10-100Hz, mJs, limited by sample damage, many high field effects

We propose a facility for ultrafast dynamics which is driven by scientific requirements

Pulse duration

Flux per pulse

Photon range

Tunability

Repetition rate

Power desnity

Synchronization

Polarization

Multiple laser systems

10-200 fs variable, < 1 fs in future

~10⁶-10¹³ (ph/pulse/0.1%BW)

20 eV to 12 keV

independently tunable beamlines

10 kHz to match pump-probe experiments

10¹⁵ Wcm⁻² achievable

10's fs pump laser - probe x-ray

Ihc, rhc soft x-ray / linear hard x-ray

Master oscillator

Photocathode laser

FEL seed laser

Beamline endstation pump lasers

 Number of beamlines ~ 20 independent beamlines

There are many proposed ultrafast x-ray projects around the world

- LCLS*: SASE FEL (funded)
- BNL DUV FEL*: harmonic generation in FEL from laser seed (operational)
- DESY TTF-II: linac-based SASE FEL (funded)
- BESSY FEL: harmonic generation in FEL from laser seed
- SPPS*: spontaneous emission from short bunches (operational)
- ALFF: Argonne linear FEL, SASE soft x-ray
- European X-ray FEL: SASE FEL
- Daresbury 4GLS: single-pass energy recovery linac with variety of x-ray sources under consideration
- Cornell / TJNAF ERL*: single-pass energy recovery linac optimized for diffraction limited undulator radiation and high average power
- MIT-Bates X-ray FEL: single-pass linac with seeded and SASE FEL's
- Arc-en-Ciel*: linac based, recirculation or energy recovery mode, SASE and seeded FEL's
- FERMI@Elettra: linac-based FEL
- BNL PERL: energy recovery linac

LUX accelerator design is based on a recirculating linac

Beam dump absorbs ~ 30 kW beam power

Magnetic arcs transport each energy beam

Retain option for energy recovery by building the final arc

Accelerating linac cw power considerations, based on TESLA technology

- · Filling time > time between bunches operate in cw mode
 - Thermal connection from cavity bath to He supply to accommodate dynamic heat load ~40 W/cavity
 - · Increase diameter, or additional connectors to liquid He supply

- · Input coupler
 - 10 20 kW CW

LUX based on a recirculating linac provides a refined source of ultrafast x-ray pulses

· RF photocathode guns produce high-quality electron beams

· 2-3 mm-mrad, 1 nC, 30 ps

· Ability to manipulate the beam emittance

Compress beam from the injector to 2-3 ps

· Accelerate in multiple passes through linac

· 1-3 GeV beam generates x-rays

10-100 fs x-ray pulses

- Compact (~ 150 × 50 m)
- Flexible configuration
 - Each pass provides opportunities for
 - Manipulation of the electron beam
 - Photon production
 - Multiple beamlines
 - Variable repetition rate
 - Energy recovery option

LUX provides tunable ultrafast x-ray pulses for up to ~ 20 beamlines

- Soft x-rays
- Laser-seeded cascaded harmonicgeneration in FEL's
- · Not SASE
 - 20-1000 eV
 - Spatial and temporal coherence
 - 10-100 fs
 - ~ Transform limited
- Hard x-rays
- Spontaneous emission in narrow-gap shortperiod insertion devices
 - 1-12 keV
 - 50-100 fs

Sophisticated short-pulse laser systems are an integral component of the facility

All-optical timing system to achieve synchronization between laser pump and x-ray probe

- Laser-based timing system
- Stabilized fiber distribution system

Interconnected laser systems

- Active synchronization
- · Passive seeding
- · RF signal generation
- > 20-50 fs synchronization

Master oscillator and timing distribution

- Phase-lock all lasers to master oscillator
- Derive rf signals from laser oscillator
- Fast feedback to provide local control of accelerator rf systems
 - > Synchronization of 20-50 fs

Typical end station concept

Precisely timed laser and linac x-ray pulses

- Active laser synchronization
 - Independent oscillators at each endstation
 - Complete independence of endstation lasers
 - Wavelength, pulse duration, timing, repetition rate etc.

Beamline endstation lasers

chirped-pulse amplification Q-switched Nd:YAG (2w) Ti:sapphire Ti:sapphire Optical grating grating Oscillator Regenerative Parametric compressor stretcher <100 fs, 2 nJ **Amplifier Amplifier** <50 fs jitter >1 mJ, 800 nm, 10 kHz RF derived from optical typical regenerative amplifier master oscillator PC

· interferometric stabilization

~20 passes $\Rightarrow \Delta L=1 \mu m (\Delta t=66 fs)$

- · cross-correlate with oscillator (compress first)
- · temperature stabilize (Zerodur or super-invar)

BERKELEY LAB

Laser-driven rf photocathode 10 kHz pulse repetition rate

- · Laser
 - $-1 \mu J$, 35 ps, 10 kHz, 266 nm
 - Spatial and temporal control to provide low-emittance electron bunches

- ANSYS analysis of rf heating and thermal management
- · Digital control of rf phase and amplitude
- Active phase control reduces stored energy

Laser pulse shaping influences the brightness of the emitted electron bunch

Hard x-rays from spontaneous emission, electron and photon pulse manipulation

- · Hard x-rays
- Spontaneous emission in narrow-gap shortperiod insertion devices
 - 1-12 keV
 - 50-100 fs

Source

Ultrafast hard x-ray pulses produced by electron bunch manipulation and x-ray compression

Focus divergence

1.2 mrad (h) \times 500 μ rad (v)

- · Conventional optical elements
 - Temporal stability will be important

Poster by P. Heimann

Tuning x-ray pulse compression as a function of photon energy

- X-ray compression $\Delta l = 2 \Delta y \frac{\sin \theta \sin \alpha}{\sin (\theta + \alpha)}$
- Add rotation φ about axis normal to Bragg planes (Bragg angle θ)
 - \Rightarrow Variation of crystal asymmetry angle α between Bragg planes and crystal surface, keeping pulse compression fixed

- Limitations
 - Penetration of x-rays into crystal: N λ ~ 1 μ m (3 fs) for Si(111) at 8 keV

Synchronize deflecting cavities and pump laser for hard x-ray production

- Electron bunch timing jitter ~ 500 fs
- Deflecting cavity phase stability < 0.01°
 - 35 fs contribution from rf phase noise
 - Expect synchronization better than 50 fs

LUX - hard x-ray pulses

- · Same flux/pulse as 3rd generation light sources
- 1000 times shorter pulse

EUV - soft x-rays from harmonic generation in FEL's

- · Soft x-rays
- Laser-seeded cascaded harmonicgeneration in FEL's
- · Strong modulation
- · Low-gain FEL
- · Not SASE
 - 20-1000 eV
 - Spatial and temporal coherence
 - 10-100 fs
 - ~ Transform limited

Harmonic generation scheme coherent source of soft x-rays

Developed and demonstrated by L.-H. Yu et al, BNL [1] e bunch Talk by X.J. Wang laser pulse modulator radiator bunching chicane e-beam phase space: Input Output energy -nπ nπ phase In a downstream undulator resonant at Energy-modulate e-beam in λ_0/n , bunched beam strongly radiates at undulator via FFL resonance with harmonic via coherent spontaneous

> Dispersive section strongly increases bunching at fundamental wavelength and at higher harmonics

coherent input radiation

emission

Bunching and harmonic content following $\lambda=240$ nm modulator

 \cdot Strong modulation defines wavelength, timing, and duration of x-ray pulse

- · Low gain regime in radiators
- · Output is temporally and spatially coherent and approximately transform limited
- · Different from SASE
 - Process is initiated and output defined by a seed laser
 - · ultra-stable pulse duration
 - · synchronized to seed laser
 - · temporal coherence imprinted by seed laser

Cascaded harmonic generation scheme

User has control of the FEL x-ray output properties through the seed laser

· OPA provides controlled optical seed for the free electron laser

- · Wavelength tunable
 - 190-250 nm
- Pulse duration variable
 - 10-200 fs
- Pulse energy
 - 10-25 μJ
- · Pulse repetition rate
 - 10 kHz
- · Endstation lasers seeded by or synchronized to Ti:sapphire oscillator
 - Tight synchronization <20 fs

Multiple independent harmonic cascades - independent wavelength tuning for each beamline

Harmonic cascades

Harmonic cascades - coherent, high-flux, tunable

Photon energy requirements

- VUV photoemission of valence states: 15-100 eV
- · C, N, and O K-edges: 290 eV, 400 eV, 530 eV
- Fe, Ni, Cu, Zn, Mg, Al, Si: 706 eV, 852 eV, 930 eV, 1020 eV, 1300 eV, 1560 eV, 1840 eV
- Transition metal L-edges: 600-1000 eV
- Diffraction studies >~ 1 keV
- LUX would provide up to 20 independently tunable beamlines offering multiple users flexibility in photon energy
 - · Harmonic cascade FEL's 15 eV to 1 keV
 - · Compressed spontaneous emission 1-12 keV

LUX flux spectrum

Example - 100 eV photons

- · Two-stage harmonic cascade FEL
 - 1.1 GeV beam energy
 - \cdot <25 μ J @ 200 nm seed pulse
- Variable pulse duration
 - · 10 fs 200 fs
- \cdot >10¹¹ photons in 100 fs, 10¹⁰ photons in 10 fs
- Approximately transform limited photon pulse (BW $\sim 10^{-4}$ for 100 fs)
 - Grating monochromator bandwidth ~10-4 gives ~10 meV
- · Spatial and temporal coherence
- · Repetition rate 10 kHz
- Tuning
 - · Change in seed laser wavelength
 - Change in final undulator field, and upstream undulators
- Polarization
 - · L, R circular from helical undulator
 - ~ seconds to change polarization
- 20% pulse-pulse fluctuations
 - Average 0.1 % in 3 sec at 10 kHz
- Synchronization
 - 20 fs timing jitter between pump laser and x-ray pulse

Example - 10 keV photons

- · Spontaneous emission in narrow-gap undulator
 - · 3.1 GeV beam energy
 - · 1 nC bunch charge
 - · 0.4 mm-mrad vertical emittance
- 5x10⁶ photons
- · 40 fs FWHM pulse
- Repetition rate 10 kHz
- Radiator bandwidth 0.7%
 - X-ray compression optics bandwidth ~10⁻⁴ gives ~1 eV
- Tuning
 - · X-ray compression optics
 - · Change in current of superconducting undulator
- Polarization
 - · Linear in plane of undulator
- Few % pulse-pulse fluctuations
 - · Average 0.1 % in 1 sec at 10 kHz
- Synchronization
 - 50 fs timing jitter between pump laser and x-ray pulse

Attosecond x-ray production development line

100 attosecond pulses at 1 nm wavelength in a harmonic cascade FEL Manipulation of the electron beam by optical pulses · Talk by A. Zholents

Future development - attosecond x-ray pulses

LUX - proposal for a Linac/laser-based Ultrafast X-ray facility

- · LUX is based on a refined, flexible, and upgradeable platform consisting of a recirculating linac and ultrafast laser systems
- Timing and synchronization, matched to laser excitation sources, are central concepts
- Provides versatile ultrafast x-ray experimental capabilities
 - Multiple independently tunable beamlines
 - · Ultrashort and coherent pulses
 - Well-characterized outputs
 - Total synchronization
 - Modest powers
 - High signal averaging rates
- Combines diffraction and spectroscopy (nuclear positions and electronic, chemical or structural probes) in the ultrafast x-ray regime, providing a research tool for outstanding new science